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A.  E. Zeering and J. A. Fe je r  

S c u t k e s t  Cecter for Advanced Studies  
S l l a s ,  Texas 

ABSTRACT 

The s?ace snd t k e  de2endence of decaying resonant o s c i l l a t i o n s  excited 

i n  a c o l l i s i c n l e s s  2lasza 3y sn i c f i n i t e s k a l l y  s x a l l  pulsed d ipo le  i s  de- 

terr.>.e<, first i n  t k e  2se;;ce and then i n  t h e  presence of an ex te rna l  - 

-- -=gzetic f i e ld .  

In  t k e  pzesecce of a zzgne t i c  f i e l d  ocly t h e  "quasi-electrostat ic"  

r e s c s a c e s  are t reated.  Tzese occur a t  the 2lasna frequency ll, t h e  e l ec t ron  

cyclotron A5-eycency 2, t h e  u-,per h3-5rid frequency (112 + f22)1'2, t h e  lower 

kykrid resczzr.t fre;llezcies a d  at the  frequencies nR where n is a p o s i t i v e  

iz teger .  ?he yZJasI-electrostatic appoxiaat5on is used i n  t h e  treatment 

of these  resoczzces; t h e  lizits of its v a l i d i t y  a r e  examined i n  some d e t a i l  

f o r  t h e  (G + a ) resciiiace. Xo similar qproximations are made f o r  plasma 2 -2 1/2 

c s c i l l a t i o n s  k t k e  a s e n c e  of a z a g r e t i c  f i e l d ;  t h e  more accurate  r e s u l t s  so 

obtaiced d i f fe r  l i t t l e  f rm those derived with the  a i d  of t h e  q u a s i - e l e c t r o s t a t i c  

a;;roxi5aticz, x i t h i n  t h e  region of i n t e r e s t .  

A t  a given t k e  i n  the presence of a magnetic f i e l d  t h e  electric f i e l d  of 

t h e  o s c i l l a t i c a  is a;?mxiir.ately uniform u? t o  a c e r t a i n  cri t ical  d i s t i n c e ,  

5eycnd which t k s  z:?litcde of t h e  o s c i l l a t i o n s  increases  proport ional ly  t o  

scze Foyer ( d i f f e r e z t  f o r  t h e  d i f f e r e n t  resonant frequencies) of t h e  dis tance 

sn? ever.tx;ally decreases again. 

zs t h e  square rat of the  t k e .  

The above centioned c r i t i c a l  d i s t ance  increases  

X t  a given point t he  o s c i l l a t i o n s  first b u i l d  
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up and then decay propor t iona l ly  t o  some inverse power of t h e  time which in 

t h e  

d is tance  ( t h e  decay is f a s t e r  beyond-fliie c r i t i c a l  distaneek a d  ip1Udif -  

f e ren t  f o r  t h e  d i f f e r e n t  resonances. 

presence of a magnetic f i e l d  i s  d i f f e ren t  within,  and beyond t h e  cr i t ical  

The phase o f  t h e  o s c i l l a t i o n s  also var i e s  with t h e  d is tance  and therefore  

t h e  resonant frequency observed with a top-side sounder f r o m  a space vehic le  

i s  a f f ec t ed  by vehicu lar  motion. For t y p i c a l  s a t e l l i t e  v e l o c i t i e s  t h e  per- 

centage frequency s h i f t  i s  in s ign i f i can t  for t h e  e l e c t r o n i c  resonances; for 

t h e  lower hybrid resonance, however, t h e  percentage frequency s h i f t  is  very 

l a r g e  and may r u l e  out  the use of t h e  local exc i t a t ion  of t h i s  resonance i n  

satel l i te  or rocke t  i nves t iga t ions  of t h e  ionosphere. 

Vehicular motion genera l ly  causes an increase  i n  t h e  observed oscil- 

l a t i o n  amplitudes; the  lower hybrid resonance is, however, again a very s t rong  

exception from t h i s  rule .  

The change of phase of the  o s c i l l a t i o n s  with pos i t i on  is bel ieved t o  be 

responsible  f o r  t h e  complicated in t e r f e rence  effects observed with t h e  a i d  of 

large sa t e l l i t e -bo rne  antennas i n  t h e  ionosphere. 
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1. Introduct ion 

There have been seve ra l  t..eoretica ~ s c u s ~ i o n s ’ - ~  of t h e  resonance 

effects observed wim t o p s t s e  if, iaosq~d-’ c Fkw and 

C a l v e r t l  shoxed t h a t  resonant quas i - e l ec t ros t a t i c  o s c i l l z t i c n s  of long 

p e r s i s t e n c e  can occur i n  Cirectiocs approxka te ly  p a r a l l e l  to t h e  magnetic 

f i e l d  a t  t h e  plasaa frequency Ji ant? a t  the  e l ec t ron  cyclotron fkequency S I ,  

~ 

and i n  d i r e c t i o n s  a?proxk.ately n c m a l  t o  t h e  nagnetic f i e l d  a t  t h e  frequency 

(II These are the Ltl.equencies at which 2 + Q2)1’2 and a t  uhole multiples of R. 
7 resonances are ccns i s t en t ly  observed 3 Sturrock 

considered t h e  e x c i t a t i c s  of resocant qt tas i -e lectrcstat ic  o s c i l l a t i o n s  by an 

i n f i n i t e s i m a l l y  small pulsed dipole. In h i s  treatzert of these  o s c i l l a t i o n s  

he uses  a combination of t h e  c o l l i s i o n l e s s  Bo l t za im equation with the equa- 

t i o n s  of ‘ e l e c t r o s t a t i c s ,  he rea f t e r  c a l l e d  t h e  quas i - e l ec t ros t a t i c  approximation. 

H e  calculates t h e  o s c i l l a t i o n s  only at t h e  pos i t i on  K 3 e r e  t h e  o r i g i n a l  d ipo le  

impulse OccurEd. 

t h e  cyclotron freyLeacy Sturrock has t c  cka.;r.ge his s d e l  fmrn 

d5,ole t o  an i n f i n i t e s b a l  l i n e  charge t o  avoid divergent i n t e r g r d s .  

In  t h e  consideration of t h e  r e s o n a c e  at t h e  hamonics  of 

i n f i n i t e s i m a l  

In t h e  

t reatment  of c e r t a i n  other  , weaker electrczisgnetic Q y e  r e s o n a c e s  not  discussed 

i n  t h i s  paper and not 2redicteG by t h e  quas i - e l ec tms ta t i c  approximation S t u r w c k  3 

uses the cold plasna approximation. 

2 2 2-1/2 -11 discusses t h e  resonance a t  (I + Q ) care  generally,  without 

USli , ,  t h e  quas i - e l ec t ros t a t i c  approximation (i.e. by using t h e  f u l l  set of 

-1 Kaxwell’s equaticns in s t ead  of those of e l e c t r c s t a t i c s ) ,  and ob ta ins  a t 

asymptotic time Zependence whereas Sturrock’s wcrk r e s u l t s  i n  a t-2 time dependence 

In t h e  present paper i n  the absence of an external  z sgne t i c  f i e l d  t h e  

resonance at t he  plasna fret. ency i s  t r e a t e d  without t h e  r e s t r i c t i o n  of t h e  quasi- 

e l e c t r o s t a t i c  a?proxirnation, using a ccF3ination cf !!zxxe11*s equations (not j u s t  
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those of e l e c t r o s t a t i c s )  with t he  e o l l i s i c z i e s s  Soltzmann equaticn.  

t h a t  t h e  more co r rec t  r e s u l t s  t hus  obtained r e p e s e n t  only a minor co r rec t ion  

It is shown 

t o  t h e  quasi-electrostatl 'c  apprsxinaticn i n  przcthe. In +p=esence 05 an 
* 

ex te rna l  magnetic f i e l d  t h e  quas i - e l ec t ros t a t i c  aTproximation i s  used but 

.both t h e  space and t h e  t i m e  dependence of t h e  f i e l d  i s  calculated.  

i s  thus an extension of Sturrock's 

(It2 t i22)1/2 t h e  r e s u l t s  a t  t h e  p o s i t i c n  of t h e  exc i t i ng  d ipo le  impulse agree 

with those of Sturrock. A t  o the r  pos i t i cns  t h e  m p l i t u d e  of t h e  o s c i l l a t i o n s  

is l a r g e r  and not smaller as was a t i c i p a t e d  By Sturrock i n  h i s  remarks on t h e  

e f f e c t s  of t h e  s a t e l l i t e  motion and the  r e s u l t i n g  motion of t h e  r e c e i v e r  away f r o m  

t h e  point  of exci ta t ion.  

This p a r t  

3 work and f o r  t h e  resonances a t  II and 

The o s c i l l a t i o n s  a t  t h e  lower hy5rid resonant frequencies are also 

discussed i n  t h e  present paper and t h e  d i f f i c u l t i e s  a n t i c i p a t e d  i n  t h e  use 

of these  resonances i n  ionospheric i nves t iga t ions  f r o m  space veh ic l e s  are 

pointed out. . 

The importance of Landau dmping  i n  t h e  treatment of t h e  resonances 

a t  harmonics of the e l ec t ron  cyclotron frequency is s t r e s sed .  This damping 

l i m i t s  the  angular range o f  t h e  waves z a r t i c i p a t i n g  i n  t h e  o s c i l l a t i o n s  and 

i ts  neglect l eads  t o  divergent i n t e g r a l s  as is apparent from Sturrock 's  work. 

In  t h e  present paper, Landau dam?ing is taken i n t o  account i n  only a r e l a t i v e l y  

roughmanner and therefore  t h e  treatment of t h e  kesonances nea r  t h e  harmonics of 

t h e  cyclotron frequency and p a r t i c u l a r l y  nea r  t h e  cyclotron frequency i tself  

is  l e s s  accurate than the  t r e a t z e n t  of the  o t h e r  resonances. 

Finally it is shown t h a t  if (112 t f22)1/2<2R then t h e  q u a s i - e l e c t r o s t a t i c  

approximation s t i l l  descr ibes  t h e  i n i t i a l  decay of t h e  o s c i l l a t i o n s  a t  the 

source near t he  frequency (112 tft2)1/2 according t o  a t-2 l a w  c o r r e c t l y  but t h a t  

a f te r  a fen millisecondsunder t y p i c a l  ionospheric condi t ions t h e  decay l a w  at 
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2 t h e  scurce zssu~es t h e  t-I f c n  oStaice5 by !:uttall . The f i e l d  a t  a po in t  
i .  

n0vk.g z ~ q  with t>.e s a t e l l i t e  ve loc i ty  is ,  hcvever, still VZU. descr ibed 

3y t h e  YLcsi-electrostat ic  q p x c h a t i o n .  

?“r,e trea+Jr.ezt of t h e  ;resent p q e r  is r e s t r i c t e d  t o  sources t h a t  are 

bf in i t e s i za l3 .y  s J . a l l ,  both i n  q a c e  ar,d i n  t k e .  

by t3is r e s t r i c t i c n  are cccsiLered i n  t h e  body of the  paper a d  in t h e  concluding 

The l h i t a t i o n s  implied - 

’ ,  

discussion. 

2. Exci ta t ion  of Plassa flesczzaces i n  the  khsezce of a U k g G e t i c  Field. 

for t h e  e l e c t r i c  5iel;l r / -  E(k,tJ), where Jint is t h e  current  c a r r i e d  by t h e  

@--a 2 a i c l e s  and j is t h e  scwce current  and where r a t i o n a l i z e d  
dext 

A s  u n i t s  f;a-e been used. E;uation (1) w i l l  be k t e r p r e t e d  as a F l a t i o n  

ketweer: f c w i e r  c c q m e n t s  i n  t h e  fol loxing Ciscussion. 

Z’E= exterzal cfiarge dens i ty  i s  taken t o  be 

a d  ( O , C , - j  of the  Cartesian coordinate syste3 €,nrC fora a dipole whose 

l a rge )  t3en an exparision of t h e  d e l t a  F a c t i o n s  i n  c i n  Foxers o f 1  results, 

t o  f i rs t  order in 
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pulsed dipole r a d i a t o r  s i t u a t e d  a t  t h e  origin.  

t h e  equation of cont inui ty  d i v 2 a x t  = -apext /a t  g ives  

A cczbination of (3 )  with 

with 3 being .the u n i t  vec to r  i n  the  d i r ec t ion  of t h e  dipole axis.  

By Fourier 's  i n t e g r a l  theorem 

Similarly 

Equations (6)  and (7) are independent of t h e  coordinates E, tl, C which w i l l  not 

be used i n  subsequent p a r t s  of t h e  paper. 
I 

The plasma current  densi ty ,  obtained from the  c o l l i s i o n l e s s  Bolt  zmann 

9 equation, neglecting t h e  motion of ions,  is 

where the in t eg ra t ion  path i s  above t h e  pole and where e is t h e  magnitude of 

. I  
3/2 the charge and m t h e  mass of an e l e c t r o n b  

exp(-mv2/2KT) of t h e  p a r t i c l e  v e l o c i t i e s  J is assumed t o  be Maxwellian. 

The d i s t r i b u t i o n  fo = N(m/l*KT) 

Without 

l o s s  of general i ty  t h e  v e c t o r 3  i s  taken p a r a l l e l  t o  t h e  z axis and t h e  vector 

5 is  assumed t o  l i e  i n  t h e  x-z plane i n  t h e  following ca l cu la t ion .  The component 

equations of (8 )  are t he re fo re  
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a 

- - These equations relate t h e  components of the  plasma current  dens i ty  j z i n t  

jl I i n t  and j x  i n t  - '1 i n t  

and perpendicular components EZ(k,u) = El I and fx(k,u) = EL of t h e  electric 

, p a r a l l e l  and perpendicular t o $ ,  t o  t h e  p a r a l l e l  

f i e l d .  Using t h e  i d e n t i t i e s  

2 2 ab112 2 -ba 2 
1 dv = ,112 e-ba Io e' dr+ine 

and 

1/2 2 2 
2 -ba , (1 &2 a2 e-ba2J a' dts1/2 a/b1'2+irra e 

2 v exp(-bv dv 

where t h e  in t eg ra t ion  path is  above t h e  pole, equation (9) may be written i n  t h e  

+ i- w k (2K+Tri2 + ,,1/2 e * 

2 1 /2  2 
where h = (coKT/Ne ) . If mu /2KTk2 >> 1, the  asymptotic expansion 
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- 3  2u-1 -(2u+l) 1 e & = - +  $.* - . e *  - x  2 
2 2e-x21' 0 T2 v=l 

u'p of the o s c i l l a t i c z s  at a given p i z t ;  t t e  csr.$ete s o l u t i c n  has been con- 

_.. 

lowing vector e;uaticzs for t h e  ;:ara;lel zrrc z e q e n d i c u l a r  cc-:c?ents of t h e  

2 where II = (!:e /E 0 is tke  electrsr :  ?hSza frequency. 

If a t t e n t i o n  is c c z f k e 2  to s u f f i c i e c t l y  zxall values of k, then the 

r ec ip roca l s  of t h e  bracketed exi-iressions asslt?,e l a r g e  values only when dI 

and the re fo re  (3 cay be replaceti by E uhen t h e  difference ll - w is not involved. 

Equations (15) a d  (16) then assme t h e  foms 

where V2 = KT/m. 

The Fourier inversicns of (17) and (18) nay be most e a s i l y  accomplished 

by using the r e l a t i o n s  
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- inus, r5e e l e c t r i c  field is de tez i r .eC by i n t e g r a l s  having t h e  fora 

f ie lC.  The in teprs t ic3  over f reqzencies  is given by 

with the ccstozy passhg Zelow t h e  s k g u l a r i t i e s .  

t h e  C5rectior.s of 

Also, t h e  in t eg ra t ions  over  

e a s i l y  perfomed and t h e  rssult is  

Ecpaticn (22) for h t5erefcre reduces t o  

The lzst factor i n  t h e  integrand of (25)  nay he mitten'' i n  t h e  foxip 



- 10 - 

i n  which Jo i s  t h e  Bessel funct ion of first kind and zero order ,  Using (26) 

i n  (25). the k- integrat ion may be c a n i e d  out12 and A becomes 

(27) 

(28)  
A = %lo 3 r  Jo [..(.- .&) 'I2] dB 

w t  w r  

2 
Whenever r << nt, t h e  r a d i c a l  i n  J 0 may be replaced by 1 - B  / 2w2t2 ;  furthermore. 

f o r  times of i n t e r e s t  here ITt >> 1 and Jo may be replaced by i ts  l a rge  argument 

approximation. The r e suk t  of these approximations on Jo is 

and A now reduces t o  

(30) 

c 2 2  (1) If r n/2w t . < <  1, t h e  exponential  i n  the integrand of A may be expanded. 

The r e s u l t  of t h e  in t eg ra t ion  i n  (30) is  
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From (20), (21) a d  (31). the e l e c t r i c  f i e l d s  are 

f u sin(nt- $ 
4 

and 

P f 

3/2 E (f;,t) = 
6c0( c2+? 1 

4 

2 2  
(2)  If r n/2u t >> 1 t k e - a s j - ~ t o t i c  expahsion 

nay be used i n  (30)  and then A reduces t o  

3 1/2 2' e 4, A - - sinlit + rII 

(32) 

(33) 

(35) 

2 2  2 2  The e l e c t r i c  fields at G s t a c e s  r ,  which satisfy 2w t / n t  << r2 << w t , are 

given by forming the q p q r i z t e  derivatives of the second term i n  (35). 

r e s u l t s  ( f o r  c >> V) are 

The 

-r 
P ( E ( s e t )  - - 4 I 6c0V3 6r t 

(36) 
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xkre € is  t h e  angle between t h e  radius  vector  

Zci-xtions (32) .  (331,  (36). (37)  show t h a t  E 

and t h e  d ipo le  axis. 

is  almost everywhere VeW 4 1 
rnch l&rger than E 

ther=.al notion of t h e  e l ec t rons ,  is much smaller than t h e  v e l o c i t y  of l i g h t  C.  

provided t h a t  t h e  ve loc i ty  V,  c h a r a c t e r i s t i c  of t h e  -1 

I.zrection may now be r e s t r i c t e d  t o  equations ( 3 2 )  and ( 3 6 )  whose r e s p e c t i v e  

1/2Vn-V2t1/2. , regicns of v a l i d i t y  a r e  separated roughly by a sphere of r ad ius  r = 2 

the ragus of t h i s  sphere increases  proportionally t o  t h e  square r o o t  of t h e  time. 

U e l l  i z s i z e  t h e  sphere t h e  f i e l d  given by (32)  i s  uniform and p a r a l l e l  t o  t h e  

2ip1e axis. 

f i e l d  is almost r a d i a l  and proport ional  t o  cos 9; t h e  r e l a t i o n  of t h e  f i e l d  i n  

t h i s  region t o  group propagation is discussed i n  Section 3.2. 

caxh sailer than V t  it may be shown t h a t  t h e  approximations of t h e  p re sen t  

thecry (kh << 1 and t h e  neglect  of Landau damping) are inva l id ;  presumably t h e  

f i e l d  s t a r t s  decreasing long before t h e  d i s t ance  becomes equal  t o  V t .  

Well outs ide t h e  sphere b u t  for d i s t ances  much smaller than  V t  t h e  

A t  d i s t a n c e s  not  

2 2  n e  phase term nr /2w t i n  ( 3 6 )  should be noted; it d i f f e r s  from t h e  usual 

phase tern occurring i n  wave propagation which v a r i e s  l i n e a r l y  with r and t, 

r a t h e r  than with F The exis tence of t h i s  phase term can g i v e  rise 

t o  ccm?licated interference p a t t e r n s  i f  l a rge  antennas are used; such i n t e r f e r e n c e  

2 and t‘l. 

pa t t e rns  have been observed with top-side sounders. 
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3. E l e c t r o s t a t i c  Osc i l la t ions  i n  a f!&gnetic F ie ld  

3.1 Basic Concepts 

The r e l a t ionsh ip  between t h e  e l e c t r i c  f i e l d  and t h e  .cur~a.-~t-  density in 

a plasma is complicdted ccnsiderably by t h e  presence of an ex te rna l  magnetic 

f i e l d .  

f i e l d ,  t h e  e l e c t r i c  f i e l d  of t h e  dipole was a lnos t  e n t i r e l y  determined by E 

a t  least f o r  reasonable values of t h e  d is tance  and t h e  time delay. 

obtained t h e r e  would have renained p r a c t i c a l l y  unchanged i f  t h e  speed of 

l i g h t  c had been s e t  equal t o  i n f i n i t y  i n  Kaxwell's equations. 

introduced by t h e  ex te rna l  Eagnetic f i e l d  are g r e a t l y  reduced i f  t h e  speed of 

l i g h t  c is set equal to  infinity or, d i f f e r e n t l y  expressed, if t h e  equat ions 

In t h e  l a s t  .section it becarie c l e a r  t h a t ,  i n  t h e  absence of a wgnetic 

I I '  
The results 

The ca?licatioas 

of e l e c t r o s t a t i c s  

k x % = O  , (39) 
N 

a r e  s u b s t i t u t e d  for Maxk-ell's e p a t i o n s .  

p a r a l l e l  t o  5. 
always a good one i n  t h e  presence of  a nsgne t i c  f i e l d  although it is probably 

adequate i n  prac t ice .  

The e l e c t r i c  f i e l d  is then aluays 

It w i l l  be shown i n  sec t ion  4 t h a t  t h e  ap?roximation c = 0 is not 

The ex te rna l  charge Censity oat and i ts  Four ie r  transform are taken to be 

given by equations (5)  and (6). 

s h o d 3  t o  be given by 

The charge dens i ty  pint of t h e  p lasca  nay be 
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uhere 

2 2 2  ) *  (- k 2 2 2  hi s i n  2 0)  .’( k hr nr s in20  khr2 
2 I+%--- Br = io exp 

- ‘r m= iaD 
c 

r 0 

f 2  - i ( w + m Q  )7  

2 2 2  2 k hr lIr cos 0 

X s: exp [- 2 r 

t (Ne 2 2  Zr /mr‘o)1/2 t h e  
‘r a?d where Rr = e Z  B/m is t h e  cyclotron frequency, r r  

plas3a frequency and hr = (coKT/Ne2%2)1’2 is t h e  Debye length associated with 

r - th  t;Te charged p a r t i c l e s  with mass mr and charge eZr. 

=e t&en t o  be electrons,  f o r  which Z1 = -1, 

c j t a i n s  the equation 

The p a r t i c l e s  with r z - 1  

From ( 3 8 ) ,  (391, and (40)One 

The electric f i e l d  s(,c;E,t) of t h e  pulsed d ipo le  i s  obtained by taking t h e  

inverse Fourier transform of equation (42), with B subs t i t u t ed  from equation r 
(41). 

ForrraUy t h e  solut ion of t h e  problem has thus been obtained in terms‘of  

i n f i n i t e  s m s  of multiple i n t e g r a l s .  

t h e  presence of a magnetic f i e l d ,  resonant plasma o s c i l l a t i o n s  contain only 

In p r a c t i c e  it has been shown’ t h a t ,  i n  

waves w i t h  p ropga t ion  vectors  k nea r ly  p a r a l l e l  o r  near ly ,perpendicular  t o  t h e  

m g n e t i c  f i e l d  ( b o  o r  e$) and with wave numbers 3 much smaller than t h e  

reciprocal Debye length (or t h e  r e c i p r o c a l  mean cyclotron radius  i n  some cases). 



In t h e  following sec t ions  

case may be) w i l l  be used 

- 15 - 

t he  approxinations k-0 and 8-0 or W I / 2  (as t h e  

t o  s implify t h e  evaluation of t h e  relevant  i n t e g r a l s  

whkh represent  W i d u a l  o s c i l l a t i n g  contr ibut ions t o  t h e  t o t a i  f i e l d  i n  

t h e  v i c i n i t y  of certain resonant frequencie.s. I n  each case t h e  self-consistency 

of t hese  approximations is demonstrated. 

3.2 

The propagation vectors  of t h e  waves p a r t i c i p a t i n g  i n  t h i s  resonance 

The Resonance a t  the  Plasma Frequency 

are near ly  p a r a l l e l  t o  t h e  magnetic f i e l d  and t h e i r  wave lengths  are large 

compared t o  t h e  Debye length'. If t h e  inequal i ty  

kh <c lm!J t dbcos e)  (43) 

is s a t i s f i e d  f o r  a l l  i n t e g r a l  values of m then Landau d a q i n g  may be neglected 

and equation (41) may be.expanded t o  y i e l d  [cf. t h e  der ivat ion of equation (15) 

i n  Ref .  11. 

2 2  2 2  4 6%'-3s2+1 llr s i n  0 lIr cos 9 k2h 211 

2 2  
3 s i n  9 

+ 

r r  
2 2 3 %  

- =  
% (4, -1) -1)(p. -4) 

2 

(44) 

'r - - 
2 

'r w Qr -0 icok 

4 
x sin2 e cos 2 e + -1 3 cos e , 

qr4 

where t h e  abbreviations Q, = w/Qr is used. 

Only t h e  e l ec t ron ic  terms are appreciable near t h e  plasma frequency. 

2 2  2 2  

occurs) i n  a combination of equations ( 4 2 )  and (44) then l eads  t o  t h e  

The use of t h e  approximations s in  81.8 

w -ll 

and w %ll (except where t h e  difference 

2 2  

equation 
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If t h e  z a x i s  of t h e  coordinate  sys t e3  is t&en ~ ~ d U e l  to  t h e  rizgnetic 

f i e l d  and t o  t h e  axis of t h e  pulsed d ipole ,  tkr-n t h e  inverse Fourier  tra?Sfom 

of t h e  z-component o f  g 2s 

(46) 

Since t h e  h vectors  a r e  near ly  p a r a l l e l  t o  t h e  z - s i s ,  t h e  prczinent  s p a t i a  

va r i a t ion  w i l l  be i n  t h e  z-direction. After  t h e  t a c e s s a q  s u b s t i t u t i o n s  from 

(61  and (45)  and completion of t h e  w i n t eg ra t ion  u i t h  the  a i d  of (231, t h e  

(47) 

and where a summation of t h e  i n t e g r a l s  for t h e  two a l t e r n a t i v e  s i g n s  is meant, 

corresponding t o  t h e  two 8 i n t e g r a l s  nea r  @=9 and 0'1. 

In  t h e  subsequent ca lcu la t ions  use w i l l  be nade of t h e  i d e n t i t i e s  

f o r  i n t e g r a l  n, 

aria 

S+OJ o 

There are corresponding i n t e g r a l s  between t h e  l i m i t s  -0. and * i n  the case of 

( 5 0 ) .  The 8 i n t eg ra t ion  can be performed using (49) with n = 0. The k in tegrand  
2 2  12  

i n  (h8) can be wr i t t en  as 2cos[kz]exp(3iV t k  /2n) and t h e  k - in t eg ra l  has t h e  va lue  ~ 1 
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' 1  

l o  
2 k-here a = 3V t l U r .  The r e s u l t  f o r  F(t)  is 

I .  

.. and f o r  F(-t) 

where t i s  taken as posi t ive.  

Use of (47). (52) and (53) gives t k e  electric f i e l d  as 
2 2 2  n z  (n -n )cos(rit+ii - ga' 

n2nt 

If z2/4a << 1, 

E ( z , t )  = 

(54) rechces t o  t h e  uniform f ie ld  

r e  duces t o  

(51) 

(52) 

This expression ind ica t e s  t h a t  the f i e l d  a c t u a l l y  increases  as t he  s3uSre of 

t h e  d i s t ance  for z >> (6V t/ll)1'2. 
2 It nay be e a s i l y  shown (by an app"cxkate 

ca lcu la t ion  of t h e  inverse Fcurier transform) t h a t  in t h e  x-y p l a e  t k e  f i e l d  

is uniform t o  t h e  much l a g e r  dis tance of about Vt. 

with speeds much less thzn V, the v a r i a t i o n  of the f i e l d  for t h e  resonance at 

t h e  plasma frequency i n  a d i r ec t ion  n c m a l  t o  t h e  magnetic f i e l d  (or, for any 

resonance i n  a d i r ec t ion  near ly  2erpendicular t o  the  k vec to r s  of t h e  ;Ircxinent 

Since space v e h i c l e s  Eove 

c o n s t i t u t e n t  waves) w i l l  be neglected. 
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If t h e  cosine i n  ( 5 1 )  is wr i t ten  a s  a sum of exponentials then it may 

2 be seen t h a t  f o r  z /4a >> 1 t h e  wave numbers contr ibut ing subs t an t i a l ly  to 

t h e  f i e l d  are i n  t h e  neighborhood of z/2a; it is very s ign i f i can t  t o  note  t h a t  

t h e  value of t h e  group ve loc i ty  f o r  k = z/2a is z / t  as would be expected. The 

-,resent approximations are then only va l id  if z/2a << h". The combination 

of t h e  condi t ions z /4a >> 1 and z/2a << h-' leads t o  t h e  inequa l i t i e s  2 

which imply z/h >> 1 and n t  >> 1; t h a t  is, z must be many Debye lengths  and 

t h e  decay described by (56) occurs a f t e r  many plasma periods.  Furthermore. 

t h e  t i n e  i n t e r v a l  over which (56) is va l id  is considerable s ince  z/h >> 

';he first of the  i n e q u a l i t i e s  (57) i s  equivalent t o  z << V t  ; thus,  f o r  a f ixed  

1. 

P value of t i m e ,  equation (56)  which ind ica tes  t ha t  E is proport ional  t o  Z 

only cor rec t  i f  z << V t .  

t h e  f i e l d  is probably q u i t e  small on account of Landau damping, 

t h e  f i e l d  given by (56) f o r  t = z/V may be regarded a s  a s o r t  of  upper bound 

(larger than t h e  maximum) of t h e  f i e l d  a t  a given point  z; it is proport ional  

to z-3'2 and thus decreases with increasing distance.  

here  t h a t  t h e  condition z <e V t  would be automatically s a t i s f i e d  f o r  a vehic le  

t h a t  moves away from t h e  source point with a ve loc i ty  much smaller than V. 

i s  

For z > V t ,  t h e  present r e s u l t s  are inva l id  and 

The value of 

I t  should be remarked 

Equation ( 5 6 )  shows t h a t  t h e  phase o f  t h e  o s c i l l a t i o n s  depends on pos i t i on  

(on t h e  z coordinate).  This has the  consequence t h a t  t h e  f i e l d  of a large 

antenna has a complicated in t e r f e rence  pat tern.  It is t h e r e f o r e  not su rp r i s ing  

t h a t  t h e  o s c i l l a t i o n s  received a f t e r  pulse  exc i t a t ion  by a large moving antenna 

do not  decay s t e a d i l y ,  but  f l u c t u a t e  i n  i n t e n s i t y  with a quasi-period much 

longer  than t h e  o s c i l l a t i o n  period . 
t hese  in te r fe rence  e f f e c t s  w i l l  be ca r r i ed  out here. 

8 No de ta i l ed  theo; : t ical  inves t iga t ion  of 

However, an e f f e c t i v e  
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wavelength X for these effects nay be defined f o r  given values  of z and t by 

t h e  condi t ion [z+X l2 - z In/6V t = 21. 2 2 If z >> is  assumed tyon t h i s  equation 

y i e l d s  X/h = h n t / ( z / h ) .  This equation states t h a t  t h e  wavelength, measured 

i n  Debye lengths ,  is equal  t o  6n times the r a t i o  of t h e  t i m e  measured i n  

plasma per iods t o  t h e  d is tance  z ,  a l s o  measured i n  Debye lengths. 

ing t o  note t h a t  i f  t h e  sa te l l i t e  travels a t  a veloc i ty  v , p a r a l l e l  to  t h e  

magnetic f i e l d  and reaches a dis tance z l a rge  compared to  t h e  dimensions of t h e  

antenna so t h a t  n v  t then X is independent of t h e  t i m e  and has t y p i c a l  va lues  

near 10 meters a t  a height  of about 1000 km i n  t h e  ionosphere. A t  these l a r g e  

d i s t ances  the re  shculd be no f luc tua t ions  i n  received amplitude. 

It is i n t e r e s t -  

S 

S 

3 .3  The Hybrid Resonances 

3.3.1 General Equations 

The propagation vectors  of the  waves ;=::icipating i n  these  resonances 

are very near ly  perpendicular t o  t h e  magnetic f i e15  and t h e i r  wave lengths  t end  

t o  be l a r g e  compared t o  the  Debye length [or more prec ise ly  s a t i s f y  the  In- 

equa l i ty  (43)]. 

of t h e  ccrnplimentary angle JI = d2-9 and t h e  approximations cos 8 = , 
s i n  8 = 1-$ , a coxbination of equations (42) and (44)  leads t o  t h e  expression 

If t h e  inequal i ty  (43) is  s a t i s f i e d  then, af ter  t h e  in t roduc t ion  

2 2 

2 2 

1 '  
P 

In  pext, given by equation (6). is taken t o  be perpendicular t o  the  magnetic 

f i e ld .  

Rescnance occurs when t h e  expression i n  t h e  cur ly  bracket vanishes for 

k = 0 and JI = 0; t h i s  condition leads t o  t h e  equation 
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1 -  

2 
*i - 

02-Qi 2 = o  (59)  # 

if only one type of i cn  is assaTed t o  be Fresect. S L c e  

zuch g r e a t e r  than t h e  e l e c t r o n i c  mass, t t e  tso scl.iticts 

equation obtained f ron  (59) nay be wr i t t en  aT?rcxL=ately 

2 2 0 2 = n e  1 + a e  , 

t he  i o n i c  class is 

of t k e  quadra t i c  

as 

( 6 0 )  

(61) 
2 

neRi(Reflitne 1 
2 @  2 

‘e + *e 

where o1 and o2 are t h e  upper and love r  hjrbrid resonmt freqpencies. 

I f  several  ions are present then e p a t i o n  (60) r e a i n s  ap2roximately 

v a l i d  b u t t h e r e  are as many loxer  hybrid resoraces as t h e r e  are types  of ions. 

If t h e  ion cyclotron frequencies are nil > R > Sl *.* then the var ious  hybrid i2 i 3  

resonant frequencies l i e  between (neQil)”* a d  nil, betveen nil and Qi2, between 

* (where it vanishes  

and Qi3, etc. ‘ I n  the  v i c i n i t y  of each of t h e s e  resonant f requencies  B t h e  j’ ‘i2 2 
2 2  tam 1-E I$ ( w  -Qr2)-l i n  (58) nay be expanded &out w = B3 

2 by def ini ton)  t o  give (w2 - Bj Enr r /(B~ 

i n  t h e  v i c i n i t y  of each hybrid resonance, may be m i t t e n  in the f o m  

2-Qr2)2 Z A.(w 3 2 2  -B3 1. Thus S(k,u), 
r 

(62) 2 -1 k 
$ k , d  = - 2 s iPextn, (u2-B 2tC.$2+D k ) 

1 3  i 
=ok A3 

where f r o m  equation (58) 

(63) 
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D = -A - l E 3 h  2 4  II . (Bj2-R r *)-’ (Bj2-4Qc 2 ) -1 
j j r  r c  ( 64) 

-2 f o r  t h e  upper hybrid resonance the  constants are given by A = lle 
1 
2 -1 

, 
B: = ne 2 2  +ne , c1 = ne ne  ( Q  e 2tII:)-1 and D1 = 3h2 II e 4(3n:-IIe ) . 

If t h e r e  is  only a s i n g l e  i o n i c  const i tuent  present and i f  t h e  inequa l i ty  

>> n n is  satisfies (as i n  ionospheric app l i ca t ions )  then t h e  constants  A2, 

C 

*e e i  

and D for t h e  lower hybrid resonance are given by 
1/2 

B2* 2 2 

2 2 2 -Q -2 
*2 = (n e +ne ) Re ni 

where f is a nu;oerical f a c t o r  not to0 d i f f e r e n t  from Unity. 

Using ( 6 ) .  (19). (23)  and (62)  the electric f i e l d  is given by 

where y is 

product i n  t h e  exponential  equals kr[sin Bo cos$  COS(^-+,) + cos eo s i n  $3 

where t h e  coordinates of c are (r,eo,+o). The Q i n t eg ra t ion  can be written 

perpendicular t o  t h e  magnetic f i e l d .  The scalar 
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s ince  $ is small ,  and (65)  becomes 

pu'vv J: dk Jo(krsinBo) d$eikr$cosOo 
n8tu E(r,t)  = 2 I" - -  2 (2x1 EoAjBj 

\ 

( 6 7 )  

C . t  D . t  
q2 - &k2) j 

i 
The $ integration may be extended t o  -a and e a s i l y  evaluated. The r e s u l t  is 

Djk2t 

(81' 2Bj 

E ( r , t )  = P)&* vv dk Jo(krsinBo) s i n  
e *  ( 2n)3'2~oAj(B jCjt) 

The k-integral is  given i n  Ref, 12. 

the f i n a l  re su l t  for s((S,t) is 

If the vector operator i n  (68) is  expanded 

where the function F i s  given by 
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(70) 

2 
where the  upper symbols ap?ly i f  (D.X.t*-E.z ) is  pos i t i ve  and t h e  lower 

symbols i f  it is negative. 

In the  previous two equaticzs p is the  cy l ind r i ca l  rad ius  and z is measured 

along t h e  d i rec t ion  of t h e  s q n e t i c  f i e l d .  

simple i n  t h e  extrene cases p2B.  << 43.t and p B >> 4 D . t  i n  t he  plane z = 0; 

t h e  expressions so obtaineZ a;?ly for values of z sa t i s fy ing  z2B2 << D.C.t  ; 

t h e  f i e l d  is than inCepsdent of 2. 

, 3 3  3 
3.e two a l t e rna t ive  expressions only d i f f e r  i n  phase. . 

Equation (69) becomes p a r t i c u l a r l y  

2 
3 3 j 3 

2 
3 3  . 

In t h e  former case a szall-argrzr;=at expansion of J 0 leads t o  t h e  s p a t i a l l y  

uniform f i e l d ,  

PBS s i n  (B4t + phase) 
(71) 

where t h e  constant phase t e rx ,  which is trot of g rea t  i n t e r e s t ,  is not  wri t ten 

i n  d e t a i l .  
2 In  t h e  case p B >> 4D.t t h e  a s q q t o t i c  expansion f o r  Jo may be used t o  

j 3 

obta in  a predominantly r a d i a l  f i e l d ;  :he r a d i a l  component is given by 

(72) 
Pp cos B. 3/2 

7-. 

0 3  3 

Ep(P,40,z=0,t) = ~ 2 ~ c j ~ 1 ’ 2 c  ~~~ - 
A. D. 2 

and i ts  magnitude thus only &?ends on tke  coordinate p cos 4o p a r a l l e l  t o  t h e  

d ipole  axis.  
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A limit on t h i s  second type of  appmximation nay be obtained by introducing 

it at an e a r l i e r  s tage ;  if t h e  Bessel funct ion i n  t h e  integrand on t h e  r i g h t  

s ide  of (68) is approximated by i t s  a s y q t o t i c  value f o r  l a r g e  argument 

then,  upon conpleting t h e  squares i n  t h e  r e s u l t h g  exponent ia ls ,  terms of t h e  

form expl-ia(k -p/2a) 1 are obtained ur,Cer t n e  i n t e g r a l  s ign,  j u s t  as i n  equat ion 

( 5 1 )  f o r  t h e  resonance a t  the  plasma frequency. 

t h e  resonance therefore  s a t i s f y  k 2r p/2a  = B p / D t .  

only va l id  when Dk2 < e  B2, subs t i t u t ion  of t h e  above value of k i n t o  t h i s  

inequal i ty  y i e l d s  f o r  t h e  v a l i d i t y  of (72) t h e  condi t ion 

+ 2 

The values  of  k cont r ibu t jng  to 

Since t h e  expansion (62)  is 

(73) -1/2 t >’ PI) 

€or p which i s  similar t o  the  condition f o r  z obtained above. 

would be s a t i s f i e d  f o r  a s a t e l l i t e  t h a t  moves away from t h e  source point .  

Both condi t ions  

The expressions so f a r  derived are conpletely gene ra l  and can be appl ied  

t o  a l l  of t he  hybrid resonances. 

A, B, C, D have been l i s t e d  previously and those w i l l  now be subs t i t u t ed ,  

In  two s p e c i a l  cases  e x p l i c i t  expressions for  

3.3.2 The Upper Hybrid Resonance 

Putting t h e  previously derived values  A1, B1* C , and % i n t o  (71) 
1 

gives t h e  uniform electric f i e l d  

f o r  distances p t h a t  s a t i s f y  the  inequa l i ty  

(753 
ne4t 

2 1/2 
p2 <e 12h2 

I 3Qe2-ne2 I ( ne2+Qe ) 

For distance: ”ying t h e  reverse  inequal i ty ,  app l i ca t ion  of (72) y i e l d s  
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+ phase 

6 h2 n,'t 1 
The inequal i ty  (73) becaaes 

2 2 1/2  

n 
1 3 ~ ~  -=e I -1/2 e t > > 3  h 2 ( 7 7 )  

e 
2 o r  p << 31/2 Vt(lIe /[3ne2-ne21 

condi t ion i n  t h e  case of the  rescmnce a t  t h e  plarma frequency. 

argcinents about t h e  t h e ,  given by (73). t h a t  must e lapse  a t  a given poin t  p 

before equation (76 )  becozes va l id ,  K i l l  c o t  be repeated here; t h e  r e s u l t s  

are similar t o  t h e  c s c i l l a t i o n s  n e a r  t he  plasma frequency. 

Eqaation (77) i s  s imi l a r  t o  t h e  corresponding 

The q u a l i t a t i v e  

Equation (76) l i k e  equation (56) contains  a phase term which o u s t  lead 

t o  in t e r f e rence  effects i f  t he  radiatzrs are l a rge ,  Depending on t h e  sign of 

3ne2-lI 

An e f f e c t i v e  wavelength for given values of p and t could again B e  def ined,  as 

i n  t h e  case of o s c i l l a t i o n s  near t h e  plasza frequency; equation (76) y i e l d s  for 

t h e  o s c i l l a t i c n s  a r e  delayed Gr a&v&ced i n  phase a t  larger distances. 
e 

t h e  wavelength XI 

3.3.3 The Laxer Hybrid Eesoaance f o r  a Single Ionic  Const i tuent  

Subs t i tu t ion  of t h e  previo;lsly derived values of A 2, B2, c2, and D2 

i n t o  (71)  l eads  t o  the  uniform f i e l d  
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' 1  
m 4 n 2  

e e  
E(P ,e,t=o,t> = .- --.sin(B2t + phase) ' (78)  

2 2 1/2 . 
( Q e  +ne 1 2 

nit p 2  << r;,'t/3 = 12h f- 
'e 

. (79) 

If tte reyerse  i z e q ~ a l i t y  of (79)  holds then (72) y i e l d s  

e e t-5'2 cos = (9,C0,z=C,t) = 5 312 2 2 9/Qn 1/2v4f2 a YkJ2K 1 (ne +ne 1 i 

K!iich is not very suc3  szaller ttian t h e  corresponding f i e l d  given by ( 7 6 ) .  

sk:oclc! a l s o  be coted t h a t  t k e  "Doppler" frequency s h i f t  caused by the  phase 

t e n  in ( E a ) ,  fcr tJTical s a t e l l i t e  v e l o c i t i e s  v = p / t  can be g r e a t e r  than 

t k e  l o se r  hyhrld A5?e;uency, E 

of r e s c z a c e  is Lzsuita5le for ionospheric i nves t iga t ions  by t h e  methods which 

have been aseC for t k e  electroilic resonances. 

It  

S 

i t s e l f .  It appears t he re fo re  t h a t  t h i s  type 2 '  

I 

-1/2 ph-lf It is h t e r e s t i z g  t o  c sas ide r  t h e  f u r t h e r  condition R . t  >> 3 
1 

fol lcxing frc= (73) s ince  it n u s t  be s a t i s f i e d ,  i n  add i t ion  t o  t h e  Peverse 

ineqxal i ty  of (791, 3efora (80) beccmes va l id .  

for ty?ical sz te l l i t e  v e l o c i t i e s  and it would seem (although no e x p l i c i t  pre; 

d i c t i o c s  are r-ade by the present  a n a l y s i s )  t h a t  t h e  s a t e l l i t e  l eaves  t h e  lower 

hy5rid xvscsant o sc i l l a? ions  behind before they  have a chance t o  bu i ld  up. 

This condition is not s a t i s f i e d  

5'te s i t x z t i o n  is just t k e  reverse i n  t he  cise of t h e  various electronic 

r e s c z c c e s ;  t k e y  kave c'ecqed ccnsiderably by t h e  time t h e  s a t e l l i t e  ap r ives  
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a t  a given point. 

3.4 

'he angular frequency of these o s c i l l a t i o n s  is i n  t h e  v i c h i t y  of nR 

Osci l la t ions  near  In t eg ra l  Multiples of t h e  Electron Cyclotron Frequency. 

e' 

where n is any pos i t i ve  in t ege r  g rea t e r  than unity. 

not a v a l i d  approximation f o r  these osc i l la t ions .  

can be sa fe ly  neglected i n  (441,  the e lec t ronic  terms rn = n and m = -n i n  

(41) must be taken i n t o  account since they make large contr tbut ions near 

Equation (44) is then 

2 Although the  k tern 

wnr-nn and w nR respec t ive ly ;  t he  corresponding terns must be included on e e 

the  r i g h t  of (44). 

is  negl ig ib le ,  t h e  i r , t egra l  on the  r i g h t  of ( 4 1 )  may be replaced by t h e  first 

term of  i t s  asymptotic expansion' and t h e  modified Bessel funct ion is w e l l  

If t h e  inequal i ty  (43) is s a t i s f i e d  then Landau damping 

represented by i t s  approximate value f o r  small argument. Equation (44) for 

e lecr rons  then takes  t h e  form 

I n  the  in t eg ra t ion  over  $I = n / 2 - 8  the e f f ec t ive  angular range is roughly 

determined by the  condition (43)  s ince Landau &,ping increases  rap id ly  

when it is not s a t i s f i e d .  As a crude estimate of t h e  inverse Fourier 

transform, the  angular range of the  J, in tegra t ion  w i l l  be taken as 

and t he  v a L s  of 0 i n  (81) w i l l  be taken 

of ,-veri by (81) t h e  Fourier component 

as exac t ly  n/2. 

O(b,w)  of  t h e  p o t e n t i a l  O ( ; , t )  is 

With t h e  value 

found from t h e  ne la t ion  %<b,w> = ihO($ ,w)  and from t h e  equations ( 6 )  and 

(42) t o  be 
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-v  .-- _- (83) 
2n-2 

@(kBw) - - 
(2n )'c0k 

ip ccs E' 
The inportant va r i a t ion  with w is  contained i n  t h e  last term of t h e  square 

bracket and therefore  the  replacement of w i n  the second term by nn IS  a 

good approximation. After  re-arrangement equation (83) t akes  t h e  form 

2 2 2  
where i n  the numerator w -n SZ has been replaced by N and where 

(85) 

In  the inverse Fourier transform of (84) t h e  w i n t eg ra t ion  can be 

ca r r i ed  out with the  a i d  of (23) and t h e  approximate r e s u l t  of t h e  $ 

integrat ion is  assumed t o  be A$ given by (821,  withlwl -nSl = N/2nSl [ the 

condition f o r  t h e  vanishing of t h e  last denominator on t h e  r i g h t  of ( 8 4 ) 3 b  

where 

and where 

(88.) . 
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After t h e  equarica 2niJo'(kp) =c 24 exp[-ikp ccs(+-~,)]  c ~ s ( Q - ~ ~ )  

is used t o  carry out  t h e  4 i n t e g r a t i m ,  equation ( 8 7 )  t akes  *e form 

G ( t )  = 2xie 1 Jo* (kp ) k4n-') ex?( iak2n-2) dk 

where t h e  i n t e g r a t i o a  ?ath ind ica t ed  by t h e  l i n i t i n g  process of ( 8 7 )  is 

9 

I 

' understood. 

The i n t e g r a l  i n  (89) w i l l  only be consizered i n  t h e  extrerne cases in 

which t h e  Eessel f m c t i o n  is w e l l  a2grcxirzated by its asyrnpotic value for 
I 
I small or l a rge  argment .  For small  z z z c e n t s  (89) becomes - in9 t I 5 k4n'3 e q ( i a k  2n-2) 

G ( t )  = -2nie 
0 

Afte r  t h e  s u b s t i t u t i c n  x = k"" equaticn (90) has t h e  form 

2 3n-1 idt ~ ~ ~ x n - l  - 
G(t) = - n i e  e 

U s e  of t h e  i d e n t i t y  

n + l  m + l  - --  
1. C + l  2 2 

 in^ ay = Ti r(+ a JOY e 

i n  (91) a d  subsegiient s c S s t i t u t i o n  irt to (663 leads t o  t h e  equation 

(89) 

(90) 

(91) 

For l a r g e  a rg~-r -n ts  of t he  Bessel f m c t i o n  (89) becomes 
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Under t h e  present assumptions only those values of k w i l l  contr ibute  t o  

(93) f o r  which the  exponent ak2n‘2 2 kp i s  near  a s t a t iona ry  value. After 

approximating t h i s  exponent by t h e  f i r s t  and t h i r d  term of the  Taylor series 

about t h i s  staticnary value (since the  second term vanishes) t h e  r e su l t i ng  

in tegra t ion  is e a s i l y  ca r r i ed  out. In  t h i s  manner the  r a t h e r  complicated 

expression 

-2nt6 an- 9 6 - 
2 2n-3 

2n I--  - -  
2n-3 2n-3 2n-3 5 2 2,1),n I x Pco -1 cos 0,P n In ( n  

(94) 

2n-2 211-3 - - (2n-3) 2n-3 
2n-2 1 - - 
2n-3 

2n-2 
2n- 3 

x t  

1 1 

t 
- -- 

2 2n-3 x ln2(n2-1) - n I 
i 

J 
is obtained f o r  the  r a d i a l  electric f i e ld .  These o s c i l l a t i o n s  W i l l  not  be 

discussed here i n  d e t a i l ;  t h e  arguments used f o r  t he  o s c i l l a t i o n s  at t h e  

, upper hybrid frequency remain va l id .  For l a r g e  values  of n and p r a c t i c a l  
. <  

values of pand t equation (94) r a t h e r  than (92) m u s t  be used; it has  t h e  

asymptotic form 

1 
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where t .i! s ign  of t h e  phase term i n  both (94) and (95) has t h e  sign of 
2 2  2 [SI (n -1)-II 1. 

amplitudes predicted by (95)  could b e  consizerzbly larger than those predicted 

by equation ( 7 6 )  f o r  t h e  upper hybrid frequency. 

It should be noted t h a t  f o r  not  too large values of n the 

3.5 Osc i l l a t ions  near t h e  Electrcn Cyclotron Frequency 

The propagation vectors  of the waves p z r t i c i p a t i n g  i n  t h i s  resonance 

. are near ly ,  but never e n t i r e l y ,  p a r a i l e l  t o  tfie c a s e t i c  f ield.  As i n  t h e  

case of the  o s c i l l a t i o n s  a t  harmonirs of t k e  qclc’mn frequency, Landau 

danping plays an inportant  par t .  If a cruCe estimte equivalent t o  equation 

(82) is made then the  expression 

[c.f. equation (22)  of Ref. 1 3  is obtained for t he  m g l e  0 

exceed before Landau dainping beccrres ts?kprta3t; s r z l l e r  angles thzn this 

w i l l  be excluded i n  the  0 integrat ion.  

t o  t h e  equation 

which 8 must e 

A c c X n a t Z o n  of (42) and (44) leads 

f o r  small angles 0 a d  f o r  m a l l  values of kh. If equation (97) is w r i t t e n  

i n  t h e  form 
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~* 

then f o r  values of e l a r g e r  than e e given 5y (951, for values of kh much 

smaller than uni ty  and €or valczs  of w c lc sz  t o  fl t he  k2 term of t h e  denaqinator 

i n s i d e  the L w l y  bracket of (9s)  is inch szaller than t h e  e 2  term and w i l l  hence 

f o r t h  be neglected. 

w integrat ion is ca r r i ed  out firs?; tk.5' czntr lbut ion comes from values Of f o r  

which t h e  denoainator near ly  vanlshes &id t h e  numerator may then be taken equal  

t o  ll n (Sl -ll ) 8 . Application of (23) a d  s u b s t i t u t i o n  of pext from ( 6 )  

In  t h e  ca l cu la t ion  of t h e  inverse Fourier t r ans€om t h e  

2 2  2 2 - 1 2  

then lrzds t o  the equation 

where 

. I  where a sum of t h e  i n t e g r a l s  corres?on<ing t o  t h e  a l t e r n a t i v e  signs is 
m e a t ,  corresponding t o  t h e  two 8 i n t e g r a l s  n e a r  8 = 0 and 8 = f .  Execution 

of t he  t r i v i a l  8 i n t eg ra t ions  r e s u l t s  i n  t h e  eqression 

I 

! 
I 

It is clear from the  form of (101) t h a t  f o r  t y p i c a l  sa te l l i te  v e l o c i t i e s  t h e  

dependence of t h e  f i e l d  on t h e  z = vst coordinate is unimportant and w i l l  

t he re fo re  be neglected. The k i n t e g r a t i o n  f o r  E(z,t)  g ives  t h e  expression 
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t 1 3  

The decay of t h e  o s c i l l a t i o n s  p reGc ted  by (102) is very rapid. On the 

b a s i s  of equation (102) a loae t h e  observed durat ion of  t he  c s c i l l a t i o n s  

a t  t h e  cyclotron frequency sf;c;lld therefore be very R U C ~  s:-:rter than the 

durat ions observed a t  t h e  o the r  reso i i t i t  frequencies.  

no t ,  however, t ake  i n t o  account t h e  size of t h e  antenna. 

t h e  form of (101) t h a t  t h e  i n t e g r a l s  occurr ing i n  it are func t ions  of 

8hnt-2 and thus  represent  t r a v e l l i n g  m v e s  which are nul t ip l ieG by factors 

of t-2 and t-3 i n  t h e  two t e n s  ins tead  of t h e  t 

If  t h e  antenna is  l a r g e  then the  waves do not  ir_r.ediately leave t h e  antenna 

and t h e  o s c i l l a t i o n s  decay zore slowly than equation (102) pred ic t s .  

This pred ic t ion  does 

It is clear front 

-S decay predic ted  by (102). 

A more 

qua; i t i ta t ive treatment of %!e problen woiald be requi red  for  =ore accurate 

predic t ions ;  moreover t h e  use of t h e  e l e c t r o s t a t i c  approximation in the 

treatment  of t h i s  rescaance is questionable. 

4. Val id i ty  of t h e  Quasi-Electrostat ic  Approxination 

I n  t h e  absence of an e x t e r n a l r , q p e t i c  f i e l d  it w a s  shon t5at the quasi-  

e l e c t r o s t a t i c  approxka t i cn  represo,rits t h e  o s c i l l a t i o n s  in ths v i c i n i t y  of a pulse1 

poin t  source r a t h e r  well. 

even i n  t h e  presence of an extenal c a p e t i c  f i e l d .  

e l e c t r o s t a t i c  approxka t ion  proSably provizes ~ I I  &equate desc r ip t ion  of 

t h e  i n i t i a l  decay of t h e  o s c i l l a t i o n s  a t  t h e  point source i tself  f o r  all the 

resonant f requencies  pred ic ted  by it. 

The s z e  zzy st i l l  be t r u e  for  sc=e of the resonances, 

Koreover, t h e  quasi-  

I t  cay be s h o q  howevel; by a rather 

crude semi-quant i ta t ive z r g E e n t  t h a t  n e a r  t h e  upper hybrid frequency the 

q u a s i - e l e c t r o s t a t i c  2 -  

decay of t h e  o s c i l l a t i c s s  at the  pos i t i on  of the poin t  source after a very 

long t i m e  . 
i i z a t i o n  6oes no t  descr ibe co r rec t ly  the a s j q t o t i c  
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A giziice at Fig. 3 of reference 1 shcws t h a t  if the  u?per hybrid 

frequency is less  than twice t h e  e lec t ron  cyclotron frequency then for  

6 = 9Cc ( i n  a direction 2er;endicular t o  t h e  naznetic f i e l d )  t h e  frequency 

is i acrzas icg  x i t h  increas izg  wave n u d e r  according t o  the  Ap$eton-Hartme 

( t o l l  $asz,a) q ? r o x i n a t i o n  bu t  is decreasing with increasing uave number 

a c c o r z h g  t o  t h e  e l e c t r c s t a t i c  a2proxination (which ap?l ies  t o  much l a r g e r  

values  of k). 

usual ly  wi<ely l i f f e r e n t  values  of k = h - l  and k = Il/c t h e  frequency w must 

reach a 3axi::Lz value w 0 . ko t h e  square 

of t h e  freqcency w D' r e s u l t i n g  from the dispersion r e l a t i o n ,  nus t  be given 

by a r e l a t i o n  no t  unl ike 

For sone in t e rzed ia t e  value ko of k somuhere between t h e  

I n  t h e  v i c in i ty  of ko and f o r  k 

2 2 2 
= w 2-Cg -D(k-ko) *D 0 

(103) 

In  aiialcgy with the  rest of t h i s  paper t h e  inverse  Fourier  transfonn 
iw t 

of the  e l e c t r i c  f i e l d  is  propor t iona l  t o  in t eg ra l s  of t h e  form,,fe ' 
which for r = 0 may be wr i t t en  as$e 

f a c t o r  u i t h  a t 

dk 
i w  t 

kldkdy. The JI i n t e g r a l  r e s u l t s  i n  a 

time dependence. The k i n t e g r a l  f o r  r = 0 

eo 1/2 .3R -3/2 

0 2w0 

2 $, dk k exp e-'T (-1 -iko (2) + 

-3/2 bas a t 

has  a to2 t i n e  dependence which is t h e  time dependence obtained i n  Section 3.4, 

Far  t >> 2w0k0 

t ine  dependence for t << 2w 0 k-2 D-l and the re fo re  t h e  electric f i e l d  

-2 D - l  t h e  last term on t h e  r i g h t  of (104,) predominates and 
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r e s u l t s  i n  a t -'I2 t i n e  2ependence f o r  the i n t e g r a l  and the re fo re  a 

t 

ana lys is  of N u t t a l l  . 
of h- l  and n/c, so t h a t  k:dl12V-1c-1, and i f  t h e  value D = 3V n (3R -n 1- 

-1 t i m e  dependence f o r  t he  e l e c t r i c  f i e l d ,  as shown by t h e  less crude 

I f  ko is crudely Paken t o  be t h e  geometric m e a s  2 

2 2  2 2 1  

derived i n  dect ion 3.4 is used then the' quas i - e l ec t ros t a t i c  approximation 

is v a l i d  for 

3 
If f o r  example II and S l  are both equal t o  about 1 Mc and i f  c / V  = 2.10 

t << 5 mill isecond is obtained as the  crude condition f o r  t he  v a l i d i t y  of 

t he  quas i - e l ec t ros t a t i c  approximation a t  t he  pos i t i on  of t h e  source. 

then 

A t  a 

point  moving away from the  source with satel l i te  v e l o c i t y  t h e  quas i - e l ec t ros t a t i c  

approximation remains v a l i d  much longer s ince  the  f i e l d  pred ic ted  by it decays 

more slowly. 

5 . Discussion 

The present  ca lcu la t ions  were r e s t r i c t e d  by t h e  assumption of an 

in f in i t e s ima l ly  small dipole  source whose moment is a 6 funct ion of t he  t i m e .  

In  p r inc ip l e  t h e  f i e l d  of any external  charge d i s t r i b u t i o n  can be expressed 

as an i i i t egra l  over  space and time of the  electric f i e l d s  (which are the  

Green's funct ions of the  problem) calculated here ,  provided t h a t  t h e  plasma 

is uniform and t h a t  t h e  ex te rna l  charge d i s t r i b u t i o n  i n  space and t i m e  is 

known. 

sheath and the  antenna, and the  determination of the  charge and i ts  d i s t r ibu t ion  

on the  antenna is d i f f i c u l t .  

is therefore  not given, t h e  r e s u l t s  of t h i s  paper a re  nevertheless  believed 

t o  provide a use fu l  i n s igh t  as wel l  as a convenient s t a r t i n g  point f o r  

In  r e a l i t y  t h e  plasma is n o t  uniform but  is bounded by t he  ion 

Although a complete so lu t ion  of the  problem 

making quan t i t a t ive  predict ions of the resczant  o s c i l l a t i o n s  exc i ted  by an 

antenna i n  a plasma. 
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The calculated f i e l d s  are accurate  within the l i m i t s  of t h e i r  respec t ive  

approximations f o r  the  o s c i l l a t i o n s  near  t he  plasma frequency and t h e  hybrid 

frequencies. Less accurate r e s u l t s  have been obtained for t he  asci lk.at%anS 

near  the  e lec t ron  cyclotron frequency and near  its ha rmnics  bec - s e  Landau 

damping, which plays a more important p a r t  i n  these  resonances, has only 

been taken i n t o  account i n  a r a t h e r  rough manner. 

A common fea tu re  of the  present  r e s u l t s  is  the  exis tence of a Surface 

t h a t  roughly separates  two regions i n  which d i f f e r e n t  approximations 

are val id .  The c r i t i ca l  d is tance  t o  t h i s  sur face  (from the  point  of oc- 

currence of the  exc i t ing  impulse) increases  proport ional ly  t o  the  square 

roo t  of the time. 

is approximately uniform but beyond the  c r i t i ca l  d is tance  t h e  f i e l d  is non- 

uniform and contains only those waves which have near ly  the Correct group 

ve loc i ty  corresponding t o  a given t i m e  and posi t ion.  

Within the  cr i t ical  d is tance  t h e  f i e l d  of t he  o s c i l l a t i o n s  

In the absence of an ex te rna l  magnetic f i e l d  the  electric f i e l d  (of 

t h e  osc i l l a t ions  near  the  plasma frequency) is uniform and p a r a l l e l  t o  t h e  

dipole  axis within t h e  c r i t i c a l  dis tance.  

beyond the  c r i t i ca l  dis tance;  its magnitude a t  any given t i m e  is  propor t iona l  

t o  t h e  cosine of t he  angle between t h e  rad ius  vec tor  and the  dipole  axis and 

is independent of t h e  magnitude of t he  rad ius  vec tor  up t o  a d is tance  somewhat 

less than V t b  

any given distance and time whose group ve loc i ty  is near ly  equal  t o  the  

r a t i o  of the dis tance t o  the  time. 

The f i e l d  is approximately r a d i a l  

In t h i s  region only those waves cont r ibu te  t o  t h e  f i e l d  a t  

S t i l l  f u r t h e r  t h e  f i e l d  probably decreases 

r a t h e r  rapidly with d is tance  on account of Landau damping. 

ou ts ide  the c r i t i ca l  surface (but  f o r  d i s t ances  much smaller than V t )  t h e  

f i e l d  decreases as t-3'2. 

o s c i l l a t i o n s  changes s u b s t a n t i a l l y  with pos i t i on  and in t e r f e rence  e f f e c t s  can 

Both in s ide  and 

Outside t h e  c r i t i c a l  sur face  t h e  phase of t h e  

occur. 
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spice vehicles  Eove w i t h  LUL~ s a i l e r  v e l c c f t i e s  t L m  V (Ghich is roughly 

t h e  Le= therr.al ve loc i ty  of :%e electrczs) they C E . ~  never reach a l i s t a n c e  

dcse  t o  Vt. 

&.< e v e c t c i > y  cr’srteAes it ( sk ice  t5e Cstzace t o  t h e  scrface is only 

X e  s p c e  vehicle  is iz i t ia i iy  icsice t h e  critical su r face  

,,,yortioaal - --- t o  t h e  sqcare  roct of <:e t i r e )  bct can cever  a?proach t h e  

Cistznce ‘t closely.  Zis E r p z e s t  is screuhat x 2 i f i e c  Sy t h e  f i n i t e  size 

of t\e mtenza. h i t i a l l y  GO, s e t t i c n  of the  a t e n n a  w i l l  be outside t h e  

t ie  d i s t m c e  V t ,  

here becme  a;?liczble (for t h e  Zecaying p5ase). 

it is czLy a%er scze tize t h a t  t h e  qqroximat ions  used 

-7 /2 
The t k e  2e2enLezce 2s t-5’2 h s i Z e  rfie c r i t i c a l  fistance and t 

o c t s i l e  %he cr i t ical  l i s t a c e  at a Zixet2 ?oint ,  i..t a point  t h a t  moves away 

f r ~  t h e  sc’,r=e with a c c a s t a t  velcci ty ,  t h e  tire Cepenzence is t”l2 i s s i d e  

t h e  cri t ical  szrface and t -3/2 cutsize.  ;.>:le a f i x e d  ?okt is f i r s t  outside 

z.6 t5en L r i s i Z e  t3e critical s c f a c e ,  t h e  reverse  is true for  a moving 

pofnt. 

at a rroving p i n t  first t -5’2 and then t 

4 2 .  and then t , - 7 / 2  
Tfics at  a fixec? po in t  t k e  tire le?enCence is first t 

-3/2 

m.. A Z ~  F:?zse, as u e l l  as t\e a=$ituLe of t h e  c s c i l l a t i n g  f i e l d  depends 

cn pos i t i on  c u t s i l e  t h e  cr i t ical  i i s t ace  at a given t i re ,  as i nd ica t ed  by 
2 t h e  phase tern z /4a i n  ( 5 6 ) .  

with or wit5out an e x t e n d d l  Las.et ic  f i e l d )  xhen a source of f i n i t e  size 

(i.e. a p r a c t i c a l  a t e n n a )  is cse?. The a2;arent frequency of t h e  o s c i l l a t i o n s  

is, torecver ,  r.&ified 3~ the zaticn of :?.e VeCick (as t h e  result of the phase 

I n t e r f e r e x e  effects are t h u s  possible (both 
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tern) bu t  t h i s  e f f e c t  is cnly of p r a c t i c a l  k p 2 t S r x e  a t  t h e  lower hybrid 

frequencies . 
The apprcxinations used i n  t h i s  p q e r  brezk 2 c - a  a t  t h e  lower hybrid 

frequencies f o r  t y p i c a l  s a t e l l i t e  and even rocket ve loc i t i e s .  

change czksed by t h e  vehicle  r.otion would be t o o  lcrge f o r  u se fu l  interpre-  

t a t l r n  of the observaticxs,  even i f  the  ve loc i ty  of t he  space vehicle were 

The frequency 

3 l i t t l e  l e s s  than tke  = s a  t h e r z a l  ve loc i ty  of ~ O Z S  acd t he  approximations 

of t h i s  paper cere  t o  r eza in  val id .  

s a t e l l i t e  or rocket raves a - a y  a lnos t  i c , e d i a t e l y  fro3 t h e  o s c i l l a t i n g  regions 

k%ere t he  present aaGrcxiKstions are va l id ,  these resozances may not even be 

obsarveble by t he  techniques used f o r  t h e  o the r  rescnazces; a considerably 

core sophis t icated theory, or an expericent would be required,  however to  

confirm such a t e n t a t i v e  conclusion. 

Korecver, it .z;sears t h a t  s ince  the  

The resonance a t  %!e w p e r  hybrid frequency reser3les more closely 

t h e  resonance at t h e  plasna frequency but t h e  electric f i e l d  is  approximately 

aozmal and not  p a r a l l e l  t o  t h e  F z z i e t i c  f i e l d  f o r  t h e s e  o s c i l l a t i o n s ,  at 

least within t h e  l i n i t s  of t h e  electrostatic a;?proximation. 

qut t h a t  the e1ec;:ostatic a p p o x i c a t i o n  is cert-ly v a l i d  i n i t i a l l y  for 

t h i s  resonance but breaks dom at  t h e  pos i t i on  of t h e  source (but no t  a t  a 

point moving with t y p i c a l  sa te l l i te  ve loc i ty  at r i g h t  angle t o  t h e  magnetic 

f ie ld)  after a t i n e  of t h e  order of mill iseconds for typical ionospheric 

It was pointed 

conditions if t h e  upper hybrid frequency is less than twice t h e  cyclotron fre- 

quency. The d e t a i l e d  behavior of these o s c i l l a t i o n s  i c s i d e  and outs ide t h e  

cri t ical  surface is described i n  t h e  t ex t .  InsfCe t h e  cr i t ical  surface t h e  

uniform f i e l d  decreases with time as t ; outsiCe t h e  cr i t ical  surface at a 

fixed point  the f r e l d  decreases as t , a t  a r,oving po in t  as to3I2. A t  a 

f i x e d  time outside t h e  cri t ical  dis tance the  cagnitude of -?he f i e l d  is pro- 

p o r t i o n a l  t o  p cos $, where o is the  dis tance frc.. t h e  nagnet ic  f i e l d  l i n e  

-2 

-5/2 

. ,  

t 

I 
I 

i 
I 
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passing through the  source and 0, i s  t h e  angle between t h e  component of the 

r ad ius  vector  normal t o  magnetic f i e l d  and t h e  dipole a x i s  (assumed n o m a 1  t o  t h e  
Alirgrrtic f i e l d L  

Of a l l  t h e  o s c i l l a t i o n s  those near t h e  low c2rdepka-ITRoFfia% 

of t h e  e l e c t r o n  cyclotron frequency have the l a r g e s t  ca l cu la t ed  amplitudes. 

a f ixed point  t he  amplitude is proportional t o  the  [-(2n-l)/(n-l)l  - t h  power 

of t h e  t i m e  i n s ide  the  cr i t ical  surface and t o  t h e  [-(4n-3)/(2n-3)] - t h  power 

A t  

of the  time outs ide the cr i t ical  surface. A t  a f i x -  rime ou t s ide  t h e  

c r i t i c a l  surface t h e  amplitude is proportional 

of t h e  dis tance from t h e  f i e l d  l i n e  passing tr. 

of the o s c i l l a t i o n s  observed from a point  moving away from t h e  source with 

a constant veloci ty  has a t time dependence. 

t he  phase of t he  o s c i l l a t i o n s  depends s t rong ly  on pos i t i on  and i n t e r f e r e n c e  

effect can the re fo re  occur hnen large r a d i a t o r s  are used. 

e ;2n/(2n-3)] - t h  power 

.. t he  source. The amplitude 

-1 Outside t h e  cr i t ical  surface 

While no calculat ions of the f ie ldhave been c a r r i e d  ou t  for large 

r a d i a t o r s ,  it is q u i t e  clear t h a t  many of t h e  conclusions w i l l  be modified 

f o r  them. 

source assuned i n  t h i s  paper has t h e  l a r g s t  absolute value, for a given 

magnitude of k, along the  dipole axis and vanishes f o r  d i r ec t ions  normal to 

Thus t h e  Fourier traqsform of t h e  charge d i s t r i b u t i o n  of t h e  point 

the  dipole  axis.  

is considered. 

dipole antenna s t i l l  vanishes f o r  d i r e c t i o n s  normal t o  t h e  dipole  axis b u t  for 

values of k much l a r g e r  than the r ec ip roca l  length t h e  largest abso lu te  value 

of t he  transform is found i n  d i r ec t ions  near ly  normal, r a t h e r  than p a r a l l e l ,  

This conclusion is sharply modified when a f i n i t e  source 

The transform of t h e  charge d i s t r i b u t i o n  f o r  a f i n i t e  t h i n  

t o  the  dipole  axis [as may be seen, f o r  example, from equation (2.2.10) of 

Balmain 

dependence of t h e  o s c i l l a t i o n  amplitude on t h e  o r i en ta t ion  of t h e  satel l i te  

14 1. This is i n  good agreement with lock wood'^^^ observat ions of t h e  
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axitema c e e  zhe k z , c n i c s  of the cyclotron frequency. 

Since the ccrr.aletlc2 05 t h i s  paper the authors became acquainted 

-A with tEe xzrk s f J x & e r € y  & :!onegha;. 

e f fec t s .  Z:ek a i n  is nct  a 2rec ict ion of the aEplitudes of the resonances 

b ~ t  r e h r  a t k c r c s h  k v e s t i g a t i o n  of the  conditions f c r  resmant  behavior 

of the ZeZirt?., n 3 t  restricted by the quas i -e lectrostat ic  approximation. A 

direct ccz.;aricn of t h e i r  r e s u i t s  with ours is therefore d i f f i c u l t  and w i l l  

on the Sam type of F#- 
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